Camera Calibration \& Radiometry

- Reading:
-Chapter 2, and sections 3.2, 5.4, Forsyth \& Ponce
-Chapter 10, Horn
- Optional reading:
-Chapter 4, Forsyth \& Ponce
- Handouts: Revised Problem Set 1

Last Lecture:

Camera calibration

- Use the camera to tell you things about the world.
- Relationship between coordinates in the world and coordinates in the image: geometric camera calibration.
- (Later we'll discuss relationship between intensities in the world and intensities in the image: photometric camera calibration.)

Plan

- First part: how positions in the image relate to 3 d positions in the world.
- Second part: how image intensities relate to surface and lighting properties in the world.

Motivation for camera calibration:
relating image measurements to positions out in the world

Other ways to write the same equation

Camera calibration

Stack all these measurements of $\mathrm{i}=1 \ldots \mathrm{n}$ points

$$
\begin{aligned}
& \left(m_{1}-u_{i} m_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(m_{2}-v_{i} m_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

into a big matrix:

$$
\left(\begin{array}{ccc}
P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\
0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\
\ldots & \cdots & \cdots \\
P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\
0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

So for each feature point, i, we have:

$$
\begin{aligned}
& \left(m_{1}-u_{i} m_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(m_{2}-v_{i} m_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

Once you have the M matrix, can recover the intrinsic and extrinsic parameters as in Forsyth\&Ponce, sect. 3.2.2.

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha r_{1}^{r}-\alpha \cot \theta r_{2}^{T}+u_{0} r_{3}^{T} & \alpha t_{x}-\alpha \cot \theta r_{y}+u_{0} r_{z} \\
\frac{\beta}{\sin \theta} r_{2}^{r}+v_{0} r_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
r_{3}^{T} & t_{\varepsilon}
\end{array}\right)
$$

The minimum eigenvector of the matrix $\mathrm{Q}^{\mathrm{T}} \mathrm{Q}$ gives us that (see Forsyth\&Ponce, 3.1)

Today's class

- First part: how positions in the image relate to $3-\mathrm{d}$ positions in the world.
- Second part: how the intensities in the image relate surface and lighting properties in the world.

- Light power per unit area (watts per square meter) incident on a surface.
- The units tell you what to integrate over to find the energy impinging on a given area.
- E times pixel area, times exposure time gives the pixel intensity out (for linear sensor response)

Radiance, L

- Amount of light radiated from a surface into a given solid angle per unit area (watts per square meter per steradian).
- Note: the area is the foreshortened area, as seen from the direction that the light is being emitted.
- Informally, radiance tells you the "brightness".

Solid angle

- The solid angle subtended by a cone of rays is the area of a unit sphere (centered at the cone origin) intersected by the cone.
- All possible angles from a point covers 4π steradians.
- A hemisphere covers 2π steradians, etc.

What's the solid angle subtended by this patch, area A, seen from P?

Image irradiance/scene radiance relationship

- The definition of scene radiance is constructed so that image irradiance is proportional to scene radiance.

Horn, 1986

Figure 10-7. The bidirectional reflectance distribution function is the ratio of
the radiance of the surface patch as viewed from the direction $\left(\theta_{e}, \theta_{e}\right)$ to the
irradiance resulting from illumination from the direction $\left(\theta_{i}, \phi_{i}\right)$.

$$
B R D F=f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=\frac{L\left(\theta_{e}, \phi_{e}\right)}{E\left(\theta_{i}, \phi_{i}\right)}
$$

Accounting for extended light sources

The total irradiance of the surface is:
$E_{0}=\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} E\left(\theta_{i}, \phi_{i}\right) \sin \left(\theta_{t}\right) \cos \left(\theta_{\mathrm{i}}\right) d \theta_{t} d \phi_{t}$
Accounting for the foreshortened area of
The total radiance reflected from the surface patch is: center patch relative to illuminant.
$L\left(\theta_{e}, \phi_{e}\right)=\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right) E\left(\theta_{i}, \phi_{i}\right) \sin \left(\theta_{i}\right) \cos \left(\theta_{\mathrm{i}}\right) d \theta_{i} d \phi_{i}$

What you'd like to pull out from L
Pixel intensities may be proportional to radiance reflected from the surface patch:

$$
L\left(\theta_{e}, \phi_{e}\right)=\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right) E\left(\theta_{i}, \phi_{i}\right) \sin \left(\theta_{i}\right) \cos \left(\theta_{\mathrm{i}}\right) d \theta_{i} d \phi_{i}
$$

θ_{e}, ϕ_{e} surface orientation relative to camera
$f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)$ surface BRDF
$E\left(\theta_{i}, \phi_{i}\right)$ illumination conditions
θ_{i}, ϕ_{i} surface orientation relative to illumination
That's hard, so let's focus on special cases for the rest of this lecture.

Special case BRDF: Lambertian reflectance

BRDF is a constant. These surfaces look equally
bright from all viewing directions.

$$
f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=\frac{1}{\pi}
$$

Radiance reflected from Lambertian surface
illuminated by point source located at $\left(\theta_{s}, \phi_{s}\right)$

$$
L\left(\theta_{e}, \phi_{e}\right)=\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} \frac{1}{\pi} \underbrace{E \frac{\delta\left(\theta_{i}-\theta_{s}\right) \delta\left(\phi_{i}-\phi_{s}\right)}{\sin \left(\theta_{i}\right)} \sin \left(\theta_{i}\right) \cos \left(\theta_{i}\right) d \theta_{i} d \phi_{i} .}_{E\left(\theta_{i}, \phi_{i}\right)}
$$

Special case BRDF: Lambertian reflectance

BRDF is a constant. These surfaces look equally bright from all viewing directions.

$$
f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=\frac{1}{\pi}
$$

Radiance reflected from Lambertian surface
illuminated by point source located at $\left(\theta_{s}, \phi_{s}\right)$
$L\left(\theta_{e}, \phi_{e}\right)=\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} \frac{1}{\pi} E \frac{\delta\left(\theta_{i}-\theta_{s}\right) \delta\left(\phi_{i}-\phi_{s}\right)}{\sin \left(\theta_{i}\right)} \sin \left(\theta_{i}\right) \cos \left(\theta_{i}\right) d \theta_{i} d \phi_{i}$
$=1 / \pi E \cos \left(\theta_{s}\right) \approx \cos \left(\theta_{s}\right)$

Special case BRDF: Specular Reflection

- Surface looks bright only when the viewing angles equal the illumination angles

$$
f\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=\frac{\delta\left(\theta_{e}-\theta_{i}\right) \delta\left(\phi_{e}-\phi_{i}-\pi\right)}{\sin \left(\theta_{i}\right) \cos \left(\theta_{i}\right)}
$$

- Radiance reflected from a specular surface illuminated by point light source locates at $\left(\theta_{s}, \phi_{s}\right)$

$$
\begin{aligned}
L\left(\theta_{e}, \phi_{e}\right) & =\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} \frac{\delta\left(\theta_{e}-\theta_{i}\right) \delta\left(\phi_{e}-\phi_{i}-\pi\right)}{\sin \left(\theta_{i}\right) \cos \left(\theta_{i}\right)} E\left(\theta_{i}, \phi_{i}\right) \sin \left(\theta_{i}\right) \cos \left(\theta_{i}\right) d \theta_{i} d \phi_{i} \\
& =E\left(\theta_{e}, \phi_{e}-\pi\right)
\end{aligned}
$$

Reflectance map

- For orthographic projection, and light sources at infinity, the reflectance map is a useful tool for describing the relationship of surface orientation to image intensity.
- Describes the image intensity for a given surface orientation.
- Parameterize surface orientation by the partial derivatives p and q of surface height z .

$$
p=\frac{\partial z}{\partial x} \quad q=\frac{\partial z}{\partial y}
$$

- Useful in recovering surface shape from images

Refl map for point source (in direction \hat{s}) Lambertian surface

Unit vector to source:

$$
\hat{s}=\frac{\left(-p_{s}-q_{s} 1\right)^{T}}{\sqrt{1+p_{s}^{2}+q_{s}^{2}}}
$$

For a Lambertian surface, $L\left(\theta_{e}, \phi_{e}\right)=1 / \pi E \cos \left(\theta_{s}\right) \approx \cos \left(\theta_{s}\right)$ $\cos \left(\theta_{s}\right)=\hat{\mathbf{n}} \cdot \hat{\mathbf{s}}$

$$
=k \frac{1+p_{s} p+q_{s} q}{\sqrt{1+p^{2}+q^{2}} \sqrt{1+p_{s}^{2}+q_{s}^{2}}} \approx R(p, q)
$$

What constraints are there for form of reflectance map?

- Radiance cannot be negative
- Defined only for $0 \leq \theta_{i} \leq \pi / 2$

For values outside this range, the radiance is zero.

- Maximum value is 1 .

Advantages of linear shading

- Linear relationship between surface range map and rendered image.
- Rendering is easy: differentiate with respect to azimuthal light source direction.
- Applies: linear sources, or shallow illumination angles and Lambertian surface.
- Allows for very simple inverse transformation from rendered image to surface range map, which we'll discuss later with shape-from-shading material.

Knowing the reflectance map, can we infer the gradient at any point?

- There is a unique mapping from surface orientation, (p, q), to radiance given by the reflectance map
- Inverse mapping is not unique
- An infinite number of orientations give rise to the same brightness
- Brightness has one degree of freedom, orientation has two
- To recover two unknows, we need two equations - two images taken with different lighting will result into two equations

Approach 1

- Photograph the object with a calibration object in the picture, or available in another photograph.
- Use the multiple responses of the calibration object to the different light sources to form a look-up table.
- Index into that table using the multiple responses of the unknown object.
- Handles arbitrary BRDF.

Approach 2

- Assume a particular functional form for the BRDF (Lambertian). Assume known light source positions (point sources at infinity as specified locations).
- Analytically determine the surface slope for each location's collection of image intensities.

Photometric stereo

Figure 10-21. In the case of a Lambertian surface illuminated successively by Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that protwo different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection of the corresponding contours in two superimposed reflectance maps.
See Forsyth\&Ponce sect. 5.4 for procedure. In HW: don't need to integrate the surface normals to get the shape.

Combining all the measurements

$$
\left(\begin{array}{c}
I_{1}(x, y) \\
I_{2}(x, y) \\
\vdots \\
I_{n}(x, y)
\end{array}\right)=\left(\begin{array}{c}
\hat{S}_{1}^{T} \\
\hat{S}_{2}^{T} \\
\vdots \\
\hat{S}_{n}^{T}
\end{array}\right) \rho(x, y) \hat{N}(x, y)
$$

A fix to avoid problems in dark areas: premultiply both sides by the image intensities

$$
\begin{aligned}
& \left(\begin{array}{cccc|}
I_{1}(x, y) & 0 & \cdots & 0 \\
0 & I_{2}(x, y) & \cdots & 0 \\
\vdots & \vdots & \vdots & 0 \\
0 & 0 & 0 & I_{n}(x, y)
\end{array}\right)\left(\begin{array}{c}
I_{1}(x, y) \\
I_{2}(x, y) \\
\vdots \\
I_{n}(x, y)
\end{array}\right) \\
& \quad=\left(\begin{array}{cccc}
I_{1}(x, y) & 0 & \cdots & 0 \\
0 & I_{2}(x, y) & \cdots & 0 \\
\vdots & \vdots & \vdots & 0 \\
0 & 0 & 0 & I_{n}(x, y)
\end{array}\right)\left(\begin{array}{c}
\hat{S}_{1}^{T} \\
\hat{S}_{2}^{T} \\
\vdots \\
\hat{S}_{n}^{T}
\end{array}\right) \vec{g}(x, y)
\end{aligned}
$$

Recovering albedo and

 surface normal$$
\rho(x, y)=|\vec{g}(x, y)|
$$

$$
\hat{N}(x, y)=\frac{\vec{g}(x, y)}{|\vec{g}(x, y)|}
$$

Surface shape from surface gradients

- Can you do it?
- What are the ambiguities? - Additive height constant
- What are the constraints?
- no surface discontinuity - the surface is smooth
- So for your homework, we'll leave the computation at the gradients.

